top of page
  • Writer's pictureMaciek Lasota

Data Quality Dashboard - your cornerstone in improving data quality

Updated: Dec 17, 2020

The main purpose of a dashboard is to provide a comprehensive snapshot of performance, which means that you should incorporate a large amount of detail without using too many drill-downs. It uses data from the past to identify trends and patterns that can help design future process improvements.

Data Quality Dashboard is an information management tool that visually tracks, analyzes, and displays key performance indicators metrics It`s highlighting key data points to monitor the health of a business, department, or specific process. They can be customized to meet the specific needs of a business and it shows how much trust you can put in your data.

Improvement of Data Quality is a long-term process and the best outcomes of such initiatives are bulletproof processes that will serve you in the future instead of just on time cleaned data. If You want to be effective you should get your process in shape monitor variations and control it instead of performing periodically data cleansing exercises. Correcting data is time-consuming so try thinking ahead when designing and implementing new processes. Investing time into quality assurance can save you a lot of later work.

If you still don`t know why you need reliable data quality check this article :

Here you can check 10 reasons why you need to have your data quality in order.

Here are the main Data quality dimensions:

Completeness doesn’t bring too much value to the table. It can be misleading as you can have all the attributes completed but it`s about the content of the field you are validating and it still can be garbage.

Compliance/Validity - This should be the focus when starting a data quality program. Does your data is satisfying business usage requirements? We can split this to :

1. Format checks - depends on company standards and markets but examples are:

  • Formats of postal codes (defined per countries)

  • Minimum and maximum number of characters - so there are no 1 character addresses or company names

  • In the case of a global company you can check if local characters are used in global names

2. External Reference data compliance

  • Checking external standard can be very beneficial as this will be very usable in reporting but also many of those classifications can be regulatory ones that are mandatory to run business (Customs Tariffs numbers)

  • Are countries codes are compliant with ISO codes standard.

  • Are Customers classified with SIC codes that exist

  • Various Product classifications are mandatory in different markets: WEE classification, ETIM, UNSPC, Customs Tariffs. You can get the list of valid codes and perform validation of your products

3. Internal Master Data compliance - for better Strategic reporting companies are implementing internal segmentation or classification of customers products and orders.

  • You need to create a master data reference table and then validate your records classifications against it.

  • Various internal business rules can be implemented here but this should be suited to your needs and started with the design phase to address actual issues of organizations:

- Each product need to have an assigned active profit center

- Each Client needs to have an active owner.

Consistency - is your data the same in different sources? This should be relatively easy if you have Master data in place and each local records are connected to your master data source of truth with a global identifier. Just compare key attributes in different sources. In an ideal world data should be syndicated from source of truth to consuming systems:

  • Comparing Customer addresses in CRM against SAP or against your Master Data

Timeliness - is your data up to date

  • Schedule and monitor the data review process. Each records with a defined last edit date should be reviewed by the owner

  • Is your data provided on time? - Creating new customers is a workflow and you can have different requirements on different steps of the sales process, always consider the business process when monitoring such aspects

New customer records created in the local sales system should have been reported to Global Master Data and assigned with Global Customer ID within 2 working days.

Correctness/Accuracy - This is the most difficult one as there is no easy way to check that from the IS point of view. How can you check if produce ct weight is 10 kg and not 15 kg? Ideally, it`s established through primary research. In practice:

  • Manual auditing of sample

  • use 3rd party reference data from sources which are deemed trustworthy

  • Data Profiling and finding coherence patterns

  • Manual validation by owner – akin to crowdsourcing

It is not possible to set up a validation rule. Instead, you should focus on creating logic that will help discover any suspicious pattern in your data that varies from what you saw in past. This are will be covered in the future by use cases we dealt with.

Data Quality Dashboard
Data Quality Dashboard

What to measure :

Start with talking to data users and define your top elements and attributes and then the purpose of it. Look into user problems try a design thinking approach to discover opportunities. Define more crucial ones and start measuring them.

You can group your KPI` into domains and accountable parties, then calculate quality indexes.

Customer Data Quality can be built as a weighted average of attributes quality (Address, Vat, Owner) but also can include processes whenever these records are updated on time or are consistent in different sources. Juggle with weights based on business impact.

Make your KPI`s SMART

Specific - specifically designed to fulfill certain criteria

Measurable - KPI Status is constantly monitored and available on the dashboard

Accountable - Clearly defined responsible party

Relevant - They have an impact on business

Time-based - there is time scope within they should be reach

My KPI checklist:

  • The object/attribute is defined in the metadata tool, rulebook, or instruction

  • There is a clear business objective - so people now why are they doing it this is important and it is building data quality awareness across the organization

  • Clearly accountable function/person/organization

  • Communication plan

  • Reviewed with reference team and stakeholders

To recap, to improve and manage your data quality you need to know where you are now and where you want to be in a defined period so:

  • Describe your data with clear definition and rules

  • Implement a continuous monitoring process and keep systems and processes up to date.

  • Engage with everyone responsible for the data tell them why and build data quality awareness

  • Increase the accountability for the data by assigning responsible

Follow me on Twitter or subscribe to be updated with data quality topics.

2,090 views0 comments

Recent Posts

See All


Suited Data Management Solutions

Solution Tailor

Blog about Data Management and Quality  Analytics Solutions.

bottom of page